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Pancratistatin (1) and structurally related naturally
occurring materials such as 7-deoxypancratistatin (2),
narciclasine (3), and lycoricidine (4) have attracted
considerable synthetic attention because of interest in the
biological activity of these compounds and their novel
structural aspects.1 In particular, three recent total
syntheses of 1 have been recorded2 as have five total
syntheses of 4.3 Our own efforts in this area have led to
a recently reported synthesis of 2 via a radical cyclization-
based strategy.4 We now report the development of a
rather different radical based approach to 4. Although
the approach is capable of providing either enantiomer
of 4, we chose to pursue the synthesis of ent-4 to allow
for biological assay of this material.

The strategy chosen for experimental scrutiny was
based on establishing the C4a-C10b bond late in the
synthesis, via radical cyclization using anO-benzyloxime
as the radical acceptor.5 The synthesis of potential
substrates for this reaction is outlined in Scheme 1. The
route began with D-lyxose (5), which was converted to
the O-benzyl-3,4-isopropylidenelyxopyranoside via known6
procedures; silyation of the remaining hydroxyl afforded
6. Reduction of 6 with lithium in liquid ammonia

followed by reaction of the crude lactol with O-benzyl-
hydroxylamine hydrochloride in pyridine gave a 93%
isolated yield of the O-benzyloxime 7 as a 2.5:1 mixture
of E/Z oxime isomers.7 This material was then converted
to the terminal alkyne 8 via oxidation using the general
procedure of Ley8 followed by application of the Corey-
Fuchs protocol9 to the resulting aldehyde. Coupling with
the aromatic subunit was achieved in excellent yield by
reaction of the terminal alkyne 8 with bromopiperonal10
using the palladium-catalyzed process developed by
Sonogashira and co-workers,11 affording the alkynealde-
hyde 9. This material was also processed (vide supra)
to afford two additional radical cyclization substrates:
removal of the TBS group afforded hydroxy aldehyde 10,
which was converted (81% isolated yield) to the hydroxy
ester 11 using the Corey-Gilman-Ganem oxidation.12

The critical reaction envisioned for establishing the
functionalized cyclohexene moiety present in 4 was
addition of a radical X• to the alkyne moiety in a substrate
such as 12, followed by cyclization of the resulting vinyl
radical onto the pendant oxime moiety. Although the
relative amounts of the potential products of this reaction
are a function of a fairly complex kinetic scheme, clearly
regiochemistry in the addition of X• to the alkyne is an
issue here. We anticipated that the regiochemical issue
should be dominated by benzylic stabilization13 of the
vinyl radical intermediate, thus leading to the vinyl
radical desired for our purposes. As candidates for X•,
we focused our attention on tri-n-butylstannyl and phenyl
thiyl radicals.
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Scheme 1a

a Key: (a) BnOH, p-TsOH, 81%; (b) DMP, acetone, p-TsOH, 90%;
(c) TBS-Cl, imidazole, 95%; (d) (i) Li, NH3, (ii) BnONH2‚HCl,
pyridine, 93% over two steps; (e) (i) TPAP, NMO, 4 ÅMS, (ii) CBr4,
PPh3, NEt3, 55% over two steps; (f) n-BuLi, 91%; (g) HF‚pyridine,
88%; (h) MnO2, NaCN, HOAc, MeOH, 81%.
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Initial experiments with 9 and Bu3SnH provided an
unexpected result: addition of stannyl radical and trap-
ping by Bu3SnH occurred without radical cyclization and
exclusively with the “wrong” regiochemistry,14 yielding
vinyl stannane 15. Since the observed regiochemistry

could have resulted from the influence of steric factors
on the initial addition of stannyl radicals to alkyne 9,
the reaction was also investigated with hydroxy aldehyde
10, but with essentially the same outcome. Much better
results were achieved with thiyl radicals. Reaction of
hydroxy aldehyde 10 with thiophenol in toluene solution,
under irradiation from a sunlamp, afforded cyclized
product 16 (73% isolated yield) as a 4:1 mixture of
isomers at the hemiaminal carbon C6. Thus, the entire
framework necessary for lycoricidine was constructed in
a single operation by sequential one-electron and two-
electron cyclization processes. However, attempts to
perform the requisite oxidation at C6 (on the C2 acetate
derived from 16) were low yielding.

In contrast, reaction of hydroxy ester 11 with thio-
phenol (toluene solution, 27 °C, sunlamp, 2 h) afforded
amino ester 17 in 91% isolated yield;15 none of the other
possible diastereomer was detected (Scheme 2). Al-
though 17 showed no tendency to cyclize spontaneously

(no reaction in refluxing toluene), subjection of 17 to the
SmI2 procedure16 developed during the course of our work
of 7-deoxypancratistatin effected three operations: re-
ductive cleavage of the N-O bond, cyclization of the
resulting amino ester, and removal of the thiophenyl
group, affording 19 in 76% isolated yield.
Also isolated from this reaction was 15% of 18, which

still contained the phenylthio moiety; thus, the yield of
tricyclic material is actually 91%. Intermediate 18 could
be resubjected to the SmI2 reduction to give 19 in 73%
isolated yield.17 Completion of the synthesis required
only the known removal of the acetonide moiety to give
(-)-lycoricidine (mp 221-224 °C dec; (lit.3b mp 224-226
°C dec), which gave 1H and 13C NMR data indistinguish-
able from those previously reported for the (+) enanti-
omer. Further characterization was achieved by conver-
sion to the known triacetate, whose spectral data were
also in excellent agreement with those previously re-
ported.
The route described herein thus affords lycoricidine in

optically pure form and 11.1% overall yield in 14 steps
from lyxose.
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Scheme 2
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